VintageWatchstraps Logo

Vintage Watch Straps

Straps for vintage fixed wire lug trench or officer's wristwatches.

Blog: Watch Sizes

Copyright © David Boettcher 2006 - 2017 all rights reserved.

I make additions and corrections to this web site frequently, but because they are buried somewhere on one of the pages the changes are not very noticeable, so I decided to create this blog section to highlight new material. Here below you will find part of one of the pages that I have either changed or added to significantly.

This particular blog page is unusual in that it isn't extracted from any other page but stands on its own as a disussion about watch sizes, in particular the sizes used to measure and characterise watch movements.

If you have any questions or comments, please don't hesitate to contact me via my Contact me page.

English and American Watch Sizes

English and American watch sizes are based on the diameter of the bottom plate of the movement.

Wycherley movement - click image to enlarge
Thanks to Alan for the pictures

The photograph here shows the dial plate of an English lever watch. The initials JW are for John Wycherley of Prescot, an English pioneer of mass produced rough movements or "frames". In 1866 Wycherley set up a factory in Warrington Road, Prescot, with three floors and steam power to produce by machinery plates and other parts that were interchangeable.

Above Wycherley's initials are a set of numbers that define the essential dimensions of the movement, often called in English watchmaking the "calliper" of the movement, derived from the measurement of the diameter of the bottom (dial) plate measured by a pair of callipers. The equivalent Swiss/French term is "calibre" and literally means much the same thing, although calibre is often used to characterise the specific layout of a movement as well as its size.

The following information is based on information in Philip Priestley's "Aaron Lufkin Dennison, An Industrial Pioneer and his Legacy".

The number 12 gives the size or diameter of the movement, followed by a • and then a 0 over a 3 that gives the pillar height which determines the thickness of the movement.

This calliper size is called the "Lancashire Watch gauge system" for determining watch sizes. Size zero formed the base of the scale with a plate diameter of 1 inch plus 5/30 inches for the mounting flange or "drop", giving a base for the scale at zero of 35 thirtieths of an inch, or 1.167″. Each 1/30 inch increased in diameter increments the gauge size by one. For smaller watches, the scale counts down from zero, indicated by 2/0, 3/0 etc. A glance at the table makes it clear.

The 12 on the Wycherley movement shown in the indicates that it is 1 inch plus (12+5)/30 = 1 and 17/30 inches in diameter, or 47/30 = 1.567″.

10/026/30 = 1.000 22.09.75
9/027/30 = 1.000 22.910.1
8/028/30 = 1.000 23.710.5
7/029/30 = 1.000 24.610.9
6/030/30 = 1.000 25.411.3
5/031/30 = 1.033 26.211.6
4/032/30 = 1.067 27.112.0
3/033/30 = 1.100 27.912.4
2/034/30 = 1.133 28.812.8
035/30 = 1.167 29.613.1
237/30 = 1.233 31.313.9
439/30 = 1.300 33.014.6
641/30 = 1.367 34.715.4
843/30 = 1.433 36.416.1
1045/30 = 1.500 38.116.9
1247/30 = 1.567 39.817.6
1449/30 = 1.633 41.518.4
1651/30 = 1.700 43.219.1
1853/30 = 1.767 44.919.9
2055/30 = 1.833 46.620.6
2257/30 = 1.900 48.321.4

It might be thought odd that the gauge was based on 1/30 part of an inch rather than some less unwieldy fraction, but 1/3 of an inch was the smallest Anglo-Saxon unit of length and was called a barleycorn, because it was nominally the length of a corn or grain of barley. This measurement is still the basis for shoe sizes in Britain. When early watchmakers needed to specify dimensions more closely, it was natural for them to think in terms of 1/10 of a barleycorn.

The micrometer, with its associated division of the inch into "thous" or thousandths of an inch, was not invented until the nineteenth century. It might be thought that it would be difficult to make something as precise as a watch without a means of accurate measurement, but the first watches were made by hand finishing parts so that they all fitted together in one watch, they were not interchangeable between different watches. It was the development of accurate measuring instruments that allowed the mass production of watches, by enabling parts to be made to uniform sizes and interchangeable.

The Lancashire gauge system was adopted by American watch manufacturers, no doubt because before watches started to be manufactured in America, watches and watch movements were imported from England, and the Lancashire gauge size would have been used to specify the size of the movement, and hence the name for the size of the watch.

The gauge size is the diameter of the movement, not the size of the watch. A size 18 American railroad watch for instance should have a movement 1 + (18+5)/30 = 1.767 inches diameter, but the overall diameter of the case containing will be around 2.25″.

The 0 over 3 indicates the pillar height, the distance separating the two plates of the movement. Standard pillar height was taken 1/8″ indicated as 0/0, with increments indicated above the line and decrements below in 1/144″. So 0 over 3 indicates a pillar height of 1/8″ minus 3/144″, or 18/144 - 3/144 = 15/144, that is about 0.104″ or 2.65 mm - which when I first worked it out seemed very small, but I have just put a rule to the movement of an English lever watch that was lying on my desk and the gap between the plates is 3 mm, so 2.65 mm doesn't seem out of the question.


It seems a bit strange that the conversion between inches and millimetres is a nice easy to remember number rather than having a long string of decimal places. In fact this wasn't always so. In 1930 the British Standards Institution adopted an inch of exactly 25.4 mm, the American Standards Association followed in 1933 and by the mid 1930s many countries had adopted this "industrial inch", but these were industrial rather than legal standards. In Britain and the Commonwealth countries and America the inch was legally defined as one thirty sixth of a yard. Before 1959 the British imperial yard and the American yard were not exactly the same, and consequently British and American inches were slightly different. In 1959 the "international yard" was defined as 0.9144 metres and this was adopted in Britain and Commonwealth countries and America. The American legal inch changed by -2 millionths of an inch and the UK legal inch by +1.7 millionths of an inch, so that the inch of exactly 25.4mm falls mid way between the old UK and US legal inches.

Swiss and French watch sizes


Swiss and French watch movement sizes are usually given in lignes. A ligne (pronounced line) is a douzième or 1/12 of an old French inch, which itself is 1.0657 of an English inch. So a ligne is about 2.256mm. In the context of watches a douzième usually means a twelfth part of a ligne, also sometimes called a point. This can be measured with a douzième gauge

The standardized conversion for a ligne is 2.2558291 mm (1 mm = 0.443296 ligne), which is more easily remembered as 2.256 mm. The line size is abbreviated by a triple prime ‴ in a similar way to the double prime sign ″ for an inch.

Watches were made in sizes from 2½ lignes, a very small lady's baguette movement, to 20 lignes or more for pocket watches.

Swiss made mens' trench wristwatches from the Great War often have a 13 ligne movement, such as a Longines 13.34, and a case size of about 35mm diameter excluding the lugs and crown. This is a nice size even today when the fashion is for larger watches. The case is about 5½ mm larger than the movement.

References such as the Bestfit Catalogue list movements grouped into half lignes, or occasionally quarter lignes. The calculator below returns the ligne size to half a ligne, e.g. 12½ or 13 ligne. The quarter ligne sizes are usually very few for men's size watches and are tacked on to the end of the half ligne sections, for a small lady's watch movement you might need the quarter size.


If you have any questions or comments, please don't hesitate to contact me via my Contact me page. Back to the top of the page.

Copyright © David Boettcher 2006 - 2017 all rights reserved. This page updated July 2017. W3CMVS.